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Some Symmetries in Theories with Higher
Derivatives

M. Borneas' and I. Damian’
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Symmetries are examined in theories with higher derivatives and both ordinary
and Grassmann independent variables. The field equations are established. The
general variation of the action is performed. Spatiotemporal invariance is studied.
Internal symmetries and conservation laws in classical and quantum fields are
discussed.

1. INTRODUCTION

One of the lines of interest concerning the enlargement of field theories
was the introduction of higher derivatives. Since the work of Bopp'" and
Podolsky® generalizing electrodynamics, theories with higher derivatives
have been used in different domains. Among these the introduction of higher
derivatives in SUSY theories have been proposed (e.g., refs. 3—5). On the
other hand, in SUSY theories auxiliary independent variables are introduced.
In the present paper we view both aspects and examine symmetries in theories
in which the Lagrangian contains two classes of independent variables and
also second-order derivatives. With this Lagrangian we define the action by

A= J dB - dx L(xvs, B, O, D20, Our, Fuors 200 (1.1

L is the Lagrangian “density,” x) are the spacetime variables, 0, are the
supplementary independent variables, and @y are the generalized coordi-
nates (fields).

The following notations have been used:
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dx = ]7_\[ dx}w de = H de(x

o

o). = dlow, O = 0100,
By = Mo, Ox, O = 02100, 0

2. FIELD EQUATIONS

As first step we assume the action principle of the form

SOAZSOJdeXL:JdeJdXSOLZO

with fixed boundary for all integrals.
We define the variation

(1.2)

2.1)

oL = L(9x + Pk, OrPr + 00wk, Cu®r + S0Cur, 5%u(l)k + 808%u®1c,

8(21[3(Pk + 808(21[3(Pk) — L(Qk, O\Qk, OaDr, 5%u(l)k, 6(21[3(Pk)

(2.2)

Applying Taylor’s expansion to the first term on the right-hand side in

(2.2) and keeping only first-order terms, we obtain

oL _OL
Ol =290 k 300 ‘
°L = 0 Ot B0 0T a(aa B
aL 2 L 2 —
+ 6(6%}1(%) S00iuPr + 5(5(21[3q)k) 300apPr = 0

505a(l)k

(2.3)

With some lengthy calculations Eq. (2.3) can be put into the form

oL oL oL
SA=1|do | d Sopr — | O Sopr + | 07 S0P
0 J J x{ 5(Pk 0Pk ( A 9 ( 5x(|)k)) 0Pk ( hm 8( 5iu(l)k)) 0P

_oL
A(6rpx) A(O7uPr)

oL oL
ak[( % @0n ) SO‘P’“] (a(, 22 00) ) 00

oL oL
+| 3 S0 + Oq S0k
( p a(ééﬁcpk)) " (6(%@» °‘P’)

+ O ( 50(Pk) + O ( 0 50(Pk)

oL oL B
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Since the boundary is fixed, one can see that the terms 4—6 and 9-11
vanish by integration, and since the variations 8o are arbitrary, the remaining
terms yield the equations

OL _ o 0L o _OL . _OL
oor T o@dgn M AGuen " A0u0r)
+ 02 —oL (2.5)

b o)

Considering 0 as Grassmann variables, Eq. (2.5) yields the field equa-
tions in superspace with higher derivatives.

Dropping the second-order derivatives, one obtains the usual field equa-
tions in superspace, for instance,®

oL o _ oL
Opr 00 d(Opi/00)

o_ oL o_aL  _
6 20px00) o d@pwan 0 3O

3. GENERAL VARIATION OF THE ACTION

We compute a general variation of the action, including variations of
the boundary of the integrals over x; variables:

8A=8Jd9jde=Jd9-8deL (3.1)
SdeL=J(8dx)L+de8L (3.2)

J (8 dx)L = J dx (0:8x)) L = J dx [OM(I8x1) — (OrL) 8x)] (3.3)

where

and

The variation of L is given by

oL oL

oL
OL = — 30, + 00,0 —58 c
o0 O T @00 °P % T A @ e O
oL oL
+ 80, 0r + — 5 850 3.4
2Pup) P T B2 O 34
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The increments 0 are defined as follows. Denote

Oi(x1, B0) = (i, 00) + B0 (3.5)
The increment 0@y is the difference
OPr = @(xn + dxp, By + 06s) — Or(xs, B0) (3.6)

Applying the Taylor expansion to @i and dropping the higher terms,
one obtains

(P/'C(Xk + SXA, Ga + 89(1) = (P/C(Xk, Oa) + 80([)k
+ [000k(xn, B0)] Oxp + [CaPi(xn, 00)] 000 (3.7)

In view of (3.6) we have

3¢k = 8ok + (0rpr) 81 + (CuPr) 80 (3.8)
Similarly we obtain
80Pk = Sorpi + (i) S + (Ozapr) 80, (3.9)
80upr = 800ur + (C2aPr) Sxz + (O%pr) 80, (3.10)
307k = 8007, Pk + (O Pi)Bxe + (i) 86, (3.11)
83appr = BoOapx * (Olup@i)Bxz + (OlapPr) 36: (3.12)

Now, bearing in mind (3.2)—(3.4) and (3.8)—(3.12), the variation (3.1)
reads

04 = J d9 J dx| Ou(Ldxy) — (OpL) Oxy. + % Sopx
k
oL ) , oL
+ 8(6aq)k) So&xq)k + 6(6(21[3([)/3 Soéaﬁ(l)k 6(5 D 506)&[)/C
OL oL
+ 882 c+_6a€89a a Csea
6(6%u([)k) ’ )‘“q)l aq)k( q)]) 6(6(1 k)( q)])
OL
+ aga . 898 eA Pk 89
O(CapPr) (Crapr) 8(6 B 590)

oL
+
5(5%@ 3]

oL
(ODuPr) 86, + 0 (Orpx) Ox,

(Olup@r) Oxe

OL
O2uPr

oL
A uen)
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oL OL
+ 2090 (OB.Qr) Sxe + 2R (O Pr) 5X§:| (3.13)

In Eq. (3.13) terms 3-7 in the brackets yield the expression (2.4). Thus
since the boundary of the integrals over 0y is fixed, the corresponding terms
vanish by integration, and bearing in mind Eq. (2.5), the only remaining
terms are

OL oL oL
3 S0P Oudor — | 0 dopr | (3.14
L[% 0 T @t T (”a@w) 0@]( |

Also the terms 8—12 in the brackets in (3.13) vanish by integration. The
terms 13—17 are canceled by the expression

_ oL _
(CeL)dxz = Lj: duxe * 5o (5§(Pk) oxe + o 6( 2u00) (02uPr) Sx
oL
+ 6(6(21[3([)15) (6&1[3([)/5) 8X§ + 6(6 ) (6@&([)/5) Sxé
OL
O3u®r) & 3.15
6(6%“'([)]6)( é)‘H(‘P/) Xé ( )

with only —LJ¢ dx: remaining, where L is the explicit partial derivative.
Thus (3.13) reduces to

_ 0oL oL
0A4=\|dO | dcd o Loxn + T - Sopr OuOoPr
J J x{ Iy X 9 ( 6k(|)k) oPx + 9 ( 6ku(|)k) 0P

oL
— (0 S0k | — 1) 3.16
( H 300 O(P'] L xi} (3.16)

Using the expressions (3.8)—(3.10), Eq. (3.16) becomes

oL oL oL
04 = | dO | dx O ¢k + 30upr — | O Opx
J J ’ ‘{a@upk) P a0 ( “awﬁu@k)) "

oL oL
6\/ c+ 62\/ kK~ 8 6\/ k
3G90 T @t M ( awm)) i

oL oL
— L& | 8x, — Our + OnaPk
] ' [a@w/a P AR P
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oL
(5“ A pr) ) 6"@’“] 59“} G-17)

(L is explicitly independent of x3).

4. SPACE-TIME INVARIANCE

In order to examine symmetry transformations leaving unchanged the
physical system, we seek the invariance of the action under different transfor-
mations. First consider space-time infinitesimal transformations. In that case
only transformations dx;, occur in (3.17). One can then write

oL oL
814 = de d - 6 6\/ k + 62\/ k
J J ) ( k{ |:a(6kq)k) " 8(6%u®/c) ek

oL
— Ty — |0 — L& o L]|=0 4.1
( “8(5%&[%)) P :| " }) 1)
which leads to

o TN (4.2)

namely the conservation of the quantity

oL oL oL
g = P+ T 2 — | O 5 — | O — L&
290 T BB ( . a(@ﬁuw) ‘P’
oL oL

=TV + =5 — | 0T | Ovx 4.3
2@ ( ' awm)) @ 4

T" is the usual energy-momentum tensor; therefore one can call I the
generalized energy-momentum tensor of the present theory.

Let us now write the elementary variations of the independent variables
by the linear relations

Ox), = expxu + en (4.4)
with
om + e =0 (4.5)

where e are first-order infinitesimals. Inserting (4.4) in (4.2) given by (4.1),
one obtains
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O [—J"_M(engQ +e)] =0 — (J"_MXg — J"_ékxv)evg — TMe,

N =

== [O(T™x: — T¥x)]eve — (1. T™)ey = 0 (4.6)

If only transformations ey occur, this leads to the conservation law (4.2).

If separate transformations eve occur, then one obtains the conservation of
the quantity

BRI = TN — Ty (4.7)

Observing that in the absence of higher derivatives RME reduces to the

“orbital” angular momentum tensor of the usual field theory, one is justified

in interpreting (4.7) as the generalized “orbital” angular momentum tensor

of the present theory.
If only 08, transformations occur, the invariance of the action leads to

OL oL
834=|[db [ dx) —0 OoPr + 7y Fhas
J J x{ 1 @0 “* T a@tuon P

oL _
(&l 8(8%u(p/€))6a(l)k } 0 (4.8)

The interpretation of this law needs a special study, perhaps within the
SUSY theory, but this is beyond the scope of this paper.

5. INTERNAL SYMMETRY IN CLASSICAL FIELDS

Consider a classical complex field ¢ and phase transformations of
the form

Or = @i = exp(ie) Pk

(5.1)
OF = o' = exp(—ie) OF
where € is a real arbitrary constant. We have
exp(ie) = 1 + ie + (*/2!) & + . ..
p(ie) (i°/2) 52)
exp(—ig) = 1 —ie + (?2)) & — ...
and for infinitesimal transformations
exp(ie) = 1 + ie
p(ie) (53)

exp(—ie) = 1 — ig
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We then can write

Ok = Qr + ieQk

Ok = QF — ik
whence
0Pk = ieQr
S0 = —icp
and
0100k = €0 Ok
O\OPE = —icO)QF

Borneas and Damian

(5.4)

(5.5)

(5.6)

We require the action to be invariant under the above transformations.

From (3.17), with dx), = 86, = 0, we have in this case

oL oL

oL
0 Sy + S +
kl:é(ék(l)k) P 0(0rF) i N OruPr)

oL

oL
o) M0 ( “(’Xﬁﬁucpk)) i

oL
( ! 6(5%({)/’?)) * \

Introducing (5.5) and (5.6) in (5.7), we obtain

0 oL _ ieQr +
A 6(6}&[)]5) Qi

+

oL
—ig)OF
doner) D9

ig0u i + (—ig)OuF

L — oL
A(Crn i) (B3 0¥)

8u5q)k

(5.7)

_oL |\ oL . _
(6” 5<5iucpk))’wk (a“ a<a%ucp;§))( ’8)‘”9] 0 (58)

One can write

APgr=0

(5.9)
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indicating the conservation of the magnitude

PR T T
* O(0r0k) O 0(0,.0F) b
oL OL

+ 6 kK~ - 8 k
Ao T a0k KoF

oL oL
—|o—— o+ |0, ——— | or 5.10
( “a(a%ucpk))q)' ( “a(a%ucpz‘))(m] (-10)

which we interpret as the four-vector current in the present theory. The
expression

Q=—inV§4 (5.11)
is the total charge. For real fields @ = @F, and thus real fields are neutral.

In the absence of the second-order derivatives $) reduces to the usual
four-vector current. Thus one can write

i = jr + i (12
where
) OL %
o - : 5.13
P doe0 P aoier) ‘P’] o
oL OL
]§ =il —— P'-q)f

o0 — —— 0
23300 M a0k

AL oL
—\|o0w— —|lor+|0n—— |of 5.14
“a(a%ucpk))q)' ( “a(a%ucpz‘))(m] (5.14)

6. INTERNAL SYMMETRY IN QUANTUM FIELDS

In quantum theories one has to examine invariance under the unitary
transformation

vut=U'U =1, vt=u"" (6.1)
a representation of which is given by
U = exp ie\,G, (6.2)

where G, are generators of a Lie group.
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For infinitesimal transformations
U =1+ ieA.G, (6.3)
The transformation of a quantum field @ is given by

or = ¢0f = (1 + ieA,G)o(1 — ieA,G))

= @ + ieA G\, ¢4 (6.4)

Denoting
[Gr, @] = (M)upr (6.5)

one can write
dpr = ie A (M) (6.6)

The Lagrangean must be invariant under transformations (6.3). Therefore
(following ref. 7) we write

_ 9oL OL Sgy _0L 3991
0L = oA O = a0 oA N T B0 oA, O
OL 337
SA, =0 6.7
007, pr)  SA, ©6.7)
But we have
o
;ﬁf = ie(M,)ur (6.8)
3(00.0x 5
5[‘\"’ =0, 84/% = Drie(M,)upx (6.9)
S(Rug) . o ,
SAF 6)%1 8[\ 6%u ZS(MI‘)ICI(PI (610)
Introducing (6.8)—(6.10) into (6.7), one obtains
L OL
- ie(M, + onie(M,)s
20x ie(M)) @ 2090 (M) @

oL
+
0 (6iu(|)k)

Oy ie(My) g

OL OL
= ie(M)up; + O ie(M,)
08 ie(M))uQi x( 2009 ig( )11([)1)
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)iS(Mr)kz(P/ — Oy ( 6ui8(M‘)qu)])

_ | 5, —2L— — oL
» A6.9n) AR pr)

oL
- 5u|:( O m )/S(Mr)qu)]:|

) oL . _
+ (6ku 6(6iu([)k) S(Mr)qu)] 0 (61 1)

In view of Eq. (1.5), Eq. (6.11) reads

ie(M)u@; + Onie(M)up:

oL
0 (6%u(|)k)

_oL |\ _
a (5“ (PR Pr) >S(M'~)/cchz] =0 (6.12)

We interpret the quantity

B oL
M 8000

) OL
M= M) +
$5 = is 2000 (M) u®:

L
8 Mr ki
AR w(My) i

oL
0T < |(M, 6.13
H @00 )( kP (6.13)
as the four-vector current of the present theory, and (6.12) represent its
conservation. $j is made up of two parts: the usual four-vector current

oL
I o)

(M) rpr (6.14)

and the supplementary four-vector current

oL

) OL
7(S) — - —_— 6 —_—
’ " 8(Rupn)

J "l 83,00 OWMesr — (

) (M) | (6.15)

Of course, as in the classical case, there is a total charge and a supplemen-
tary charge added to the usual one.

7. CONCLUSIONS

The goal of this paper was to examine some symmetries in theories based
upon an action containing higher derivatives and two kind of independent
variables, such as SUSY theories. To our knowledge, this study is new.
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Some general conservation laws were inferred. Such general results
could give indications about possible new specific conservation laws.

The advent of unified gauge theories had led physicists in recent years
to question the absoluteness of many known conservation laws. For instance,
the possibility that conservation of electric charge may break down has been
discussed by some authors, (e.g., refs. 8 and 9). In this paper the four-vector
current gets a supplementary term, beyond the usual one. This result can be
interpreted as indicating that in general the total charge is conserved, but the
usual charge only in some cases, when the supplementary term vanishes or
is negligible.
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